Low rider: (what) are humans optimizing in reduced gravity?
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» Tradeoff in minimizing or maximizing V.
Optimality yields:
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Linear cost

L ~ Work based _ _
_ _ ~ Force/Time . » Assumed cost model independent of speed

V* X gk/(k—l—Q)

* kis unknown, but some good candidates are:
- k=1:a simple linear cost in step frequency
» k=2: ~work based cost from swinging legs
« k= 3: ~ a force/time cost [4, 5]
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* In reality, the best fit kincreases as treadmill
speed increases
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* Does force/time cost dominate at high
speeds”?

k in Efreq X (g/v)k

« Consistent with shorter stance time
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An energetic tradeoff

Vertical Takeoff Velocity
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