What are the priorities of the
motor control system? motor control system?

- Test: place subjects in novel circumstances, and observe changes in gait
Reduced gravity apparatus offloads centre of mass during running [1]
- Humans tend to minimize metabolic energy expenditure in locomotion [2, 3]
Simple model compares cost of redirecting centre of mass ($E_{\text {col }}$) to cost of rapid steps ($E_{\text {freq }}$)

$$
E_{\mathrm{tot}}=\underbrace{\frac{m V^{2}}{2}}_{E_{\mathrm{col}}}+\underbrace{A\left(\frac{g}{V}\right)^{k}}_{E_{\mathrm{freq}}}
$$

Tradeoff in minimizing or maximizing V. Optimality yields:

$$
V^{*} \propto g^{k /(k+2)}
$$

- k is unknown, but some good candidates are: - $k=1$: a simple linear cost in step frequency - $k=2$: \sim work based cost from swinging legs - $k=3$: ~ a force/time cost $[4,5]$

An energetic tradeoff

- Stance cost ($E_{\text {col }}$) as a function of V is independent of gravity
- Frequency cost is gravity dependent.
- As gravity decreases, frequency costs at a particular V go down, allowing runner to settle on a lower takeoff speed

Experiment

- 10 subjects, 25 conditions:
$\cdot g=[0.15,0.25,0.35,0.5,1] \cdot G$
- Treadmill speed $=0.5,1,2,3.1,4.1 \mathrm{~m} / \mathrm{s}$
- As gravity increases, a pronounced increase in takeoff velocity occurs
- For all speeds and all subjects
- $k=2$ is a good predictor of trends, particularly at high speeds

Limitations

- Anticipated no effect of treadmill speed - In reality, vertical takeoff velocity decreases as treadmill speed increases
- No flight phase at high g and low speed? - Add fore-aft accelerations to model?

References
[1] Hasaneini et al. 2017. bioRxiv doi:10.1101/201319
[1] Hasaneini et al. 2017. bioRxiv doi:10.1101/201319
[2] Long \& Srinivasan 2013. J. R. Soc. Interface 10:20120980 [2] Long \& Srinivasan 2013. J. R. Soc. Interface 10:20120980
[3] Selinger et al. 2015. Curr. Biol 25:2452-56 [4] Ku0 2001 [3] Selinger et al. 2015. Curr. Biol. 25:2452-56 [4] Kuo 2001.
J. Biotech. Eng. 123:264-9 [5] Doke \& Kuo 2007. J. Exp. Biol 210:2390-8 [6] Hasaneini et al. 2013. Adv. Robot. 27:845-59

Changing costs?

- Assumed cost model independent of speed - In reality, the best fit k increases as treadmill speed increases
- Does force/time cost dominate at high speeds?
- Consistent with shorter stance time
- Finite stance dynamics could be added to model

