
Phase Synchronization of Compliant Legs using Virtual Damping Control
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Introduction

Problem Definition
I Simplified monopedal spring-mass models

can capture the dynamics of locomotion
I Physical robots, however often incorporate

multiple legs to overcome actuator
limitations, improve stability and support
on terrain of varying roughness

I A common problem here is to ensure a
particular phase relation between
oscillations of different legs for different
locomotory gaits

Contributions
I We propose a new method to achieve

synchronization patterns using virtually
tunable damping coefficient on individual
legs, resulting in energy and power
efficiency

I We show that a hybrid leg model with
intermittent contact offers better affordance
over system phase even when only the
damping coefficient is explicitly controlled

Synchronization Framework

Dynamic System Model
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State vector for a single leg defined as

xi :=
[
hi ḣi

]T

where legs are labelled with i ∈ A,B. The
same structure will be used for a continuous
Spring-Mass-Damper (SMD) and a
Spring-Loaded Inverted Pendulum (SLIP)
model, both with tunable damping.

The Effects of Leg Damping
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Figure: SMD and SLIP reaction over damping.

I Changing d(t) for the SMD model has very
little effect on the phase

I Damping during stance for the SLIP model
has substantial effect on the timing for the
next stride and hence the phase.

Return Map Analysis
We can merge the state spaces of two legs
as xA ∈ X A,xB ∈ X B −→ z ∈ Z := X A ⊗ X B,
yielding

ż = fx (z,u) .

Limit cycles can be found with a Poincaré
section S := {z ∈ Z |ḣA = 0} ⊂ Z at apex
states.

Synchronization Framework

Phase and Energy Coordinates
The equations of motion for the SLIP model
are defined for stance and flight as[

ḣ
ḧ

]
st

=

[
0 1
−k −d(t)

] [
h
ḣ

]
, ḧfl = −g .

As in [1], a coordinate transformation is
introduced with y = Wx , by using the matrix

W :=

ω√1 + β2 β√
1+β2

0 1√
1+β2

 , (1)

where we define

ω :=

√
4k − d2

2
, β :=

d
2ω
.

This transforms the system into the
canonical form (for the SMD model)

ẏ =

[
ẏ1
ẏ2

]
= ω

[
−β 1
−1 −β

] [
y1
y2

]
(2)

During both stance and flight, leg phase can
be defined as

φ := tan−1(
y2

y1
) . (3)

The evolution of leg phase during stance and
flight are respectively given by

φ̇st = −ω ; (4)

φ̇fl = −ω

(
gh + ḣ2

)
kh2 + ḣ2 + dhḣ

. (5)

The energy needs to be defined differently
for stance and flight, with

Est :=
1
2
(
y2

1 + y2
2
)

=
1
2

(
kh2 + ḣ2 + dhḣ

)
; (6)

and
Efl := gh +

1
2

ḣ2 (7)

respectively.
The evolution of this energy coordinate for
stance and flight are given by

Ėst = −dEst, Ėfl = 0 . (8)

Stride-to-Stride Behavior
Combing two legs, we have the joint state
vector in phase/energy coordinates defined
as

q̄ :=
[
φA EA φB EB

]T
. (9)

Choosing a Poincaré section with φA = 0, at
the apex point of the first leg, the Poincaré
state takes the form

q̃ =
[
EA φB EB

]T
. (10)

An important issue is that two subsequent
strides of Leg B occur within a single stride
of Leg A, using two separate damping
coefficients. To ensure continuity, the
damping coefficient from the previous stride
for Leg B needs to be recorded in the
Poincaré state, resulting in the definition of
state

qj i := [∆θj i,∆EA
j i ,∆EB

j i ,d
B
j i ]T . (11)

Before each stride for Leg A, a control
decision must be made with

uj i+1 = [dA
j i ,d

B
j i ]T = f (qj i) (12)

with the goal of reaching equilibrium at
qj i+1 = R(qj i) = q∗ = [0,0,0,0]T . (13)

Controller Design

Control of phase and energy accomplished
by modulating damping coefficients for both
legs, using the proportional feedback laws

dA
jA+1 = αA

E

(
EA

jA − (E∗ + αA
φ∆φjA)

)
(14)

dB
jB+1 = αB

E

(
EB

jB − (E∗ − αB
φ∆φjB)

)
. (15)

In our results, we use αA
θ = 0, which selects

Leg A as the “phase master”, concerned with
its own energy alone. Leg B, on the other
hand, regulates both its own energy as well
as its phase relationship with Leg A.

Simulation Results

For this simulation, controller parameters are
selected as αA

φ = 0, αB
φ = 1, αA

E = αB
E = 0.1

and desired states are θ∗ = π/2,E∗ = 15
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Figure: Convergence to the desired state from varying
initial conditions within the tolerance of error 0.1.
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Figure: Phase difference,energy error and damping
coefficients for a sample run.

Conclusion and Future Work
I Phase synchronization of compliant legs

via damping control was attempted for the
SMD model, but damping offers very little
affordance over the SMD phase.

I Synchronization was achieved with the
SLIP model through a proportional
controller.

I Convergence properties were investigated
in simulation, with more elaborate analysis
left as future work.
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